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The continued fraction representation of the correlation function and a secant hyperbolic form of the 
memory function have been used to calculate the dynamical structure factor S(q ,  w )  of fluid for the 
densities ranging from n* = 0.668 to 0.763 and a temperature to 120 K. The parameters of the memory 
function have been determined from the fourth and sixth frequency sum rules of S(q, 0). The predicted 
results for S(q, o) have been compared with recent neutron scattering data. A good agreement has been 
achieved. Further, i t  is also found that the position of first minima of full width at half maxima of S(q, o) 
shifts towards smaller wave number side with decrease in density while, the position of first maxima is 
independent of density. 

KEY WORDS: Dynamical structure factor, memory function, fluid Argon, Sum rules. 

1 INTRODUCTION 

Recently the dynamical structure factor of fluid argon has been measured' by neutron 
scattering experiment for density ranging from n* ( = no3) = 0.668 to 0.763 for 
isotherm T* (=  k ,  TIE) = 0.974. This provides information about the density de- 
pendence of the dynamical structure factor, S(q ,  w). Physically it demonstrates the 
importance of the correlated collisions on the dynamical structure factor of dense 
fluids. 

We have recently developed a phenomenological theory' which predicts the time 
evolution of the correlation functions and transport coefficients. This theory has 
provided very satisfactory results for the transport coefficients of Lennard-Jones (LJ) 
fluids over wide ranges of densities and temperatures. The assumption of the theory 
is a phenomenological secant hyperbolic form of the memory function whose 
parameters are determined from the sum rules of the appropriate correlation 
functions. We have also used3 this theory to predict the dynamical structure factor 
of liquid aluminium. The predicted results had been found to be in good agreement 
with molecular dynamics data. 
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In this paper we analyse the neutron scattering data' for fluid Ar36 using our 
theory with the aim of checking the applicability of the model memory function for 
LJ fluids. The inputs of the theory are fourth and sixth frequency sum rules which 
have been calculated for LJ potential corresponding to fluid Ar36 using the static 
pair correlation function, g ( r )  obtained from the theory of Sung and Chandler" and 
the superposition approximation for the static triplet correlation function. The results 
obtained for S(4, w )  have been compared with neutron scattering data at two densities 
along T* = 0.974 isotherm. The results are found to be in good agreement for wave 
number q I 2.5 kl. 

In Section 2, we present the theoretical procedure for the calculation of S(4 ,o ) .  
Results and discussion are given in Section 3. In Section 4, we present our conclusion. 

2 THEORETICAL PROCEDURE 

The Fourier-Laplace transform of the density-density correlation function in 
Mori-Zwanzig formalism5 can be written as 

where S(4) is the static structure factor and P = ( k B T ) - ' .  fi1(4,  w )  is the Fourier- 
Laplace transform of the first order relaxation kernel or memory function (MF), 
M,(4 ,  t ) .  The dynamical structure factor is given by 

S(4, w )  = (2/P)(b"(q, 0) (2) 
where 4"(4, w )  is the imaginary part of (b(4, w). Form Eq. (1) and (2) we find that 

where f i i ( 4 ,  w)  and f i y ( q ,  w)  are the real and imaginary parts of the M , ( q ,  w). It 
follows from the projection operator technique used in deriving Eq. (1) that M1(4,0) 
and higher order relaxation kernal follows the equation similar to Eq. (l), given by 

(4) 

where fi,(4, w )  is the Fourier-Laplace transform of the nth order relaxation kernel 
M,(4, t ) ,  6, = M,(q, t = 0) and these are related6 to the frequency sum rules of the 
dynamical structure factor. Equation (4) provides a continued fraction representation 
for the M , ( q ,  w). In order to calculate f i , ( q ,  w)  from Eq. (4) it is necessary to truncate 
the hierarchy of Eq. (4) at some suitable stage. Higher order f i (4 ,w)  are more 
complicated objects mathematically due to restricted time evolution of fluctuating 
forces. Therefore, one normally restricts the discussion to first or second order. We 
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DYNAMICS OF FLUID Ar 77 

truncate the hierarchy of Eq. (4) at first order and obtain 

with 

and 

where and A?; are real and imaginary parts of f i , (q ,  0). The relaxation kernel 
M,(q, t )  is not known a priori. The relaxation kernel can be obtained microscopic- 
ally using the mode-mode coupling scheme’. However, i t  is not yet clear how to 
extend the theory for various thermodynamic states other than those investigated 
near the triple point density. From the practical point of view the phenomenological 
forms of the relaxation kernels have played a n  important role in interpreting the 
neutron scattering data for the correlation function. In the past various phenom- 
enolgical forms of the relaxation function have been used and results obtained have 
been extensively reviewed by Boon and Yip’. In the present paper we use our recently 
proposed model for the memory function namely 

M,(q,  t )  = a sech(hr). (8) 

It is noted that M,(q, t )  is a solution of non-linear differential equation, 

The compatability of our predicted results with MD data/neutron scattering experi- 
ments would demonstrate the effect of non-linearity of atomic motions in fluids. It 
can also be noted that the memory function given by Eq. (8) tends to a Gaussian 
and a simple exponential for the short and long times, respectively. 

The parameters ‘a’ and ‘b’ in Eq. (8) are determined from the short time properties 
of the memory function which are exactly known. For  the present case we have 

In Eqs (10) and (1  1 j o:(qj and Rf(q) are second and fourth frequency sum rules of 
longitudinal current-current correlation function. Defining 

R;r,(4, w )  = fi;(q, (1)) + ifi;(q, (11) = i e 1 W f ~ Z ( 4 ,  t) ,  (12) I‘ 
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with 

2b 

where $(x) is Euler 'Psi' function defined as $(x) = d/dx(ln T(x) and T(x) is gamma 
function. The dynamical structure factor S(q ,  w)  can be calculated using Eqs. (13), (6), 
(7) and (3). 

3 RESULTS AND DISCUSSION 

In order to calculate S(q ,  w), we require the inputs 6, and 6,. The calculation of 6, 
involves only the pair correlation g(r)  and the first two derivatives of the interatomic 
potential, whereas 6, involves upto third order derivatives of potential, g(r)  and static 
triplet correlation function g3(rr r'). Although the simplified expressions for 6, and 6, 
has been published by Bansal and Pathak' but it is felt that some intermediate steps 
in the derivation of Qf(q) is desirable. Therefore, we present in an appendix a few 
intermediate steps involved in the angular integration of triplet contribution to Qf(q). 
The w:(q) and Qf(q) are calculated using the Lennard-Jones potential for fluid Argon 
and g(r)  obtained from the optimised cluster theory of Sung and Chandler4. It may 
be mentioned that this g(r)  has been found" to be in good agreement with M D  data. 
For the triplet correlation function, we use the superposition approximation. The 
numerical results for the frequency sum rules are obtained using Gauss-quadrature 
method of integration. The numerical values thus obtained for frequency sum 
rules and experimental S(q)  are used to calculate 6, and 6, from Eqs (10) and (11). 
These are plotted in Figure 1 for fluid at T* = 0.974 (120 K) and n* = 0.668 
and 0.763 for wave numbers q < 6.0 kl. 

at densities 
n* = 0.668 and 0.763 for different wave numbers. These are plotted in Figures (2) 
and (3) respectively. Theoretical S(q ,  w)  shown by full line are compared with neutron 
scattering data represented by solid circles. From Figures (2) and (3) it can easily be 
seen that very good agreement has been achieved between our results and experi- 
mental data for wave number q I 2.5 k'. The full width at half maxima (FWHM) 
and S(q ,  w = 0) are plotted in Figures (4a) and (4b), respectively for both the densities. 
Here dots and crosses are the available experimental results for n* = 0.668 and 
0.763, respectively. It is found that the positions of maxima and minima of FWHM 
are predicted well and results are in good agreement for 0.8 A- '  < q I 2.5 kl. 
From Figure (4a) we note that the position of first maxima of FWHM (around where 
static structure factor shows first maxima) remain same, when the density is changed 
from 0.668 to 0.763. But the position of first minima shifts toward larger wave number 
with increase in density. Figure (4b) shows an overall good agreement for S(q, 0) with 
experimental data for all the wavenumber. From Figure (4b) it can be seen that the 

Using the above inputs, we have calculated S(q, w)  for fluid 
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c&’) 
0 1 2 3 4 5 6 

Figure 1 
for density, (i)  n’ = 0.668 (ii)  0.763. 

Variation of 6, and 6, (parameters of the memory function) with wave number q at T* = 0.974 

position of maxima in S(q,  0) shifts towards smaller wave number side as the density 
decreases. 

In order to see the difference in dynamical structure factor of liquid aluminium 
calculated in our earlier work and Lennard-Jones fluids, we have plotted the second 
stage memory function M;(q, w )  and M’;(q, w)  in Figure ( 5 )  for some values of q. 
From Figure ( 5 )  it can be seen that M;(q, w)  and M’;(q, w)  are decreasing function 
of w. On the other hand, from our earlier work on liquid A1 we found that for small 
q, M2(q, w)  start from zero and decreases to attain its lowest value, then increases. 
As q increases the minimum flattens and finally disappears for large q. For large 
wave numbers both M ;  and M‘; were decreasing function of w as found in present 
case. The difference in behaviour of M;(q, w)  and hence of M,(q, w)  is responsible 
for the appearance and collective excitation peaks in the dynamical structure factor 
of liquid aluminium. In an alternative way the different behaviour of S(q, w )  for 
liquid A1 and 36Ar can be understood by examining the behaviour of M’;(q, o) which 
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Figure 2 The variation of the dynamical structure factor S(q, w )  for Argon fluid with w at T* = 0.974 
and n* = 0.668 for different values of q (given in each part). Dots represent neutron scattering data and 
continuous lines represent our results. 
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Figure 3 Same as Figure 2 but at n* = 0.763. 
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Figure 4 Variation of FWHM of S(q,w) and S(q ,O) /S(q)  with q. Dots and crosses represent neutron 
scattering data at n* = 0.668 and 0.763, respectively. 
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Figure 5 Variation of real part M;(q,  w )  and imaginary part M;(q,  o) of the memory function with w. 
The scale for w for M ;  runs from right to left and that for M'; in the reverse direction (shown by the doubled 
scale). 

appears explicitly in the expression of S(q, o). For small o the expansion of M;(q, w)  
and M';(q, o) are given as 

and 
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Figure 6 Same as Figure 1 but for liquid aluminium at its triple point 
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DYNAMICS OF FLUID Ar 85 

Using above expansions in Eq. (7), one gets for the low frequency behaviour of 
M,(q ,  w )  given as 

M;(q, u) = 6, (:;)[ - 1 + ~ (1 - 2 ( g  + 1 - 7 7t '")I (15) 

on the other hand, 

1 m - na a 
M;(q, w )  = - - - 

4b o 

and 

for large o. These when substituted in Eq. (7), we get 

rca exp( - nw/2b) 
2b 09 M;(q ,  0) = 6, - 

It can be seen from Eqs (15) and (17) that M;'(q, o) will have a maximum for 
b2/a(=  6,/6,) < 3.277. We have plotted 6, and 6, of liquid aluminium in Figure 6 
for the comparison with results of argon shown in Figure 1. I t  is clearly seen from 
Figure (6) and Figure (1) that this ratio (6,/6,) is close to 1.25 for liquid aluminium 
and is about 2.25 for fluid Ar for small q, where collective behaviour is dominated. 
This leads to the more pronounced peak in M ; ( q ,  o) for liquid aluminium than that 
in fluid Ar. This and the present results for fluid Ar and our earlier results3 for liquid 
aluminium of S(q ,  w )  suggest that collective peak in S(q, o) appears when there exist 
strong peak in M;(q, w)  which depends on the ratio 63/62. The difference in value if 
6,/6, for liquid Al and Ar implies that A1 is more harmonic like whereas Ar is more 
anharmonic system. This ratio is roughly related to Gruneisen parameter used in 
the discussion of anharmonicity in solids. 

4 CONCLUSION 

In this paper we have calculated S(q, w)  of fluid Ar36 using secant hyperbolic form of 
the memory function appearing in the Mori-Zwanzig formalism. The results are 
compared with neutron scattering data and are found to be in good agreement for 
wave number q I 2.5 '. From the good agreement obtained here as well as from 
our earlier work3 on the dynamical structure factor of liquid aluminium, we find that 
secant hyperbolic form of the memory function provides a good representation for 
small and intermediate wave number. 
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APPENDIX 

Expression for 0;: 

The expression for the fourth frequency sum rule of longitudinal current current 
correlation function has been obtained to be 

+ 6q3 Sin(qX1)Ulxaa + 2(kBT)-'(l - co~(qx,))U:xaI 

+ .' m2 SSdrldr2g,(r,, r2)[{1 - cOs(qxl)} 

+ COS(q(x1 - ~2))lUlxaU2xa (A. 1) 

In above equation g(rl) and g3(r1, r2) are static pair and triplet correlation function 
and the wave vector q is assumed to be along x-axis. We have used the notation 

The subscript 2 and U represent that the argument of interaction potential U(r , )  is 
changed to r2. Using the relations for the derivatives of the central potential, namely 

(A.3) 

(A.4) 

Ula, = Alrlolrlp + Bldap 

Ulaby = Clrlarlprly + Al(r1adpy + rlpday + r l y d a p )  

and 

where 

it is straight forward to carry out the angular integration of the pair contribution 
terms in Eq. (A.1). The result is 

= ~ o ~ d r l r ~ g ( r l ) [ 1 5 q 2 ( A l r ~  + 38,)  
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In Eq. (A.6)j0, j i3jZ are spherical Bessel functions of zeroth, first and second order; 
their arguments qr is suppressed for convenience. Also J ,  =,j,/qr and J ,  = j,/qr. 

The angular integration of the triplet contribution term given in the curly bracket 
of Eq. (A.l) is straight forward. This can be done by expanding g3(r1, r,) which is a 
function of r l ,  r ,  and p i.e. the cosine of the angle between rl and r,, in terms of 
spherical harmonics x,,,(O, 4 )  in the following way, 

where (el, cpl)  and ( O , ,  4,) are the polar angles of r ,  and r, ,  respectively. The 
coefficient g’(rl, r 2 )  can be obtained from the relation 

where Pl(p) is Legendre polynomial of order 1. 
The angular integration of the last term in Eq. (A. l )  is quite tricky. For this term 

it is of no use to expand g3(r1,r2) using Eq. (A.7) as cos(q(xl - x,)) involves the angles 
between q and both rl  and r,. However it is possible to get rid of this difficulty with 
the help of symmetric properties of the derivaties of central potential as described 
below: 

Using 

and the defination of g3(r1, r2) i.e. 

n3g3(rl, r2) = C (6(rl - rk + rj)6(r2 - r l  + rj)). (A.lO) 
i # j # k  

We rewrite the last term in Eq. (A.l)  in an equivalent form 

(A.11) 

Making an interchanging of the atom i and j and using the property (A.9), Eq. (A.11) 
can be written in an alternative form 

r r  
(A. 12) 

with r 1 2  = Ir, - r,l = / ( T i  - rk) - (ri - rj)l. 
The subscript 12 on U in Eq. (A.12) and in what follows represents that the 

argument of potential U(r,) is changed to r 1 2 .  We have thus transferred the angle of 
r l  and r, from cos(q(x, - x,)) to the derivative of the potential. Now we define a 
new function 

F(B) = 93(r1, r21U12xo (A. 13) 
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which is a function of P and can easily be expanded in terms of spherical harmonics. 
Using the expansion procedure and after a lengthy algebra, the result obtained for 
the triplet contribution is given by 

0 

+ 2 A , B , r :  + 3BiB2) - 6{8,(PZA1A2r:r: + A , B , r : )  

+ (&P’ + J l ) B I A z r i  + j 0 B 1 B 2 )  + 3{P2AzA12r:z 

x (dIBlr1 - (W + JA/r,z + ~ l z ~ z r : z ~ ~ l ~ l  

x (rl  - 2P2)  + (0,P’ + Jl)ri)/r?z + (e,P’ + 51) 

x A z B l z R :  +JoBIBlz‘ i l ,  (A.14) 

where 

0,  = j, - 2 5 , ;  8, = 8, - 5, 

The variables /3, and p2 are respectively, the cosine of the angles between the vectors 
r l  and r, ,  and r, and r 1 2 .  We would like to mention that arguments leading to 
simplification of triplet contribution are different than the first given by Bansal and 
Pathak’ ’. However, our result agrees with their result. 
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